Часть 1. Сопротивление теплопередаче – первичный критерий определения толщины стены

Чтобы определится с толщиной стены, которая необходима для соответствия нормам энергоэффективности, рассчитывают сопротивление теплопередаче проектируемой конструкции, согласно раздела 9 «Методика проектирования тепловой защиты зданий» СП 23-101-2004.

Сопротивление теплопередаче – это свойство материала, которое показывает, насколько способен удерживать тепло данный материал. Это удельная величина, которая показывает насколько медленно теряется тепло в ваттах при прохождении теплового потока через единичный объем при перепаде температур на стенках в 1°С. Чем выше значение данного коэффициента – тем «теплее» материал.

Все стены (несветопрозрачные ограждающие конструкции) считаются на термоспротивление по формуле:

R=δ/λ (м2·°С/Вт), где:

δ – толщина материала, м;

λ — удельная теплопроводность, Вт/(м ·°С) (можно взять из паспортных данных материала либо из таблиц).


Полученную величину Rобщ сравнивают с табличным значением в СП 23-101-2004.

Чтобы ориентироваться на нормативный документ необходимо выполнить расчет количества тепла, необходимого для обогрева здания. Он выполняется по СП 23-101-2004, получаемая величина «градусо·сутки». Правила рекомендуют следующие соотношения.

Таблица 1. Уровни теплозащиты рекомендуемых ограждающих конструкций наружных стен


Материал стены

Сопротивление теплопередаче (м2·°С/Вт) / область применения (°С·сут)

конструкционный

теплоизоляционный

Двухслойные с наружной теплоизоляцией

Трехслойные с изоляцией в середине

С невентили- руемой атмосферной прослойкой

С вентилируемой атмосферной прослойкой

Кирпичная кладка

Пенополистирол

5,2/10850

4,3/8300

4,5/8850

4,15/7850

Минеральная вата

4,7/9430

3,9/7150

4,1/7700

3,75/6700

Керамзитобетон (гибкие связи, шпонки)

Пенополистирол

5,2/10850

4,0/7300

4,2/8000

3,85/7000

Минеральная вата

4,7/9430

3,6/6300

3,8/6850

3,45/5850

Блоки из ячеистого бетона с кирпичной облицовкой

Ячеистый бетон

2,4/2850

2,6/3430

2,25/2430

Примечание. В числителе (перед чертой) – ориентировочные значения приведенного сопротивления теплопередаче наружной стены, в знаменателе (за чертой) — предельные значения градусо-суток отопительного периода, при которых может быть применена данная конструкция стены.

Полученные результаты необходимо сверить с нормами п. 5. СНиП 23-02-2003 «Тепловая защита зданий».

Также следует учитывать климатические условия зоны, где возводится здание: для разных регионов разные требования из-за разных температурных и влажностных режимов. Т.е. толщина стены из газоблока не должна быть одинаковой для приморского района, средней полосы России и крайнего севера. В первом случае необходимо будет скорректировать теплопроводность с учетом влажности (в большую сторону: повышенная влажность снижает термосопротивление), во втором – можно оставить «как есть», в третьем – обязательно учитывать, что теплопроводность материала вырастет из-за большего перепада температур.

Теплопроводность стен

Часть 2. Коэффициент теплопроводности материалов стен


Коэффициент теплопроводности материалов стен – эта величина, которая показывает удельную теплопроводность материала стены, т.е. сколько теряется тепла при прохождении теплового потока через условный единичный объем с разницей температур на его противоположных поверхностях в 1°С. Чем ниже значение коэффициента теплопроводности стен – тем здание получится теплее, чем выше значение – тем больше придется заложить мощности в систему отопления.

По сути, это величина обратная термическому сопротивлению, рассмотренному в части 1 настоящей статьи. Но это касается только удельных величин для идеальных условий. На реальный коэффициент теплопроводности для конкретного материала влияет ряд условий: перепад температур на стенках материала, внутренняя неоднородная структура, уровень влажности (который увеличивает уровень плотности материала, и, соответственно, повышает его теплопроводность) и многие другие факторы. Как правило, табличную теплопроводность необходимо уменьшать минимум на 24% для получения оптимальной конструкции для умеренных климатических зон.

Часть 3. Минимально допустимое значение сопротивления стен для различных климатических зон.


Минимально допустимое термосопротивление рассчитывается для анализа теплотехнических свойств проектируемой стены для различных климатических зон. Это нормируемая (базовая) величина, которая показывает, каким должно быть термосопротивление стены в зависимости от региона. Сначала вы выбираете материал для конструкции, просчитываете термосопротивление своей стены (часть 1), а потом сравниваете с табличными данными, содержащимися в СНиП 23-02-2003. В случае, если полученное значение окажется меньше установленного правилами, то необходимо либо увеличить толщину стены, либо утеплить стену теплоизоляционным слоем (например, минеральной ватой).

Согласно п. 9.1.2 СП 23-101-2004, минимально допустимое сопротивление теплопередаче Rо2·°С/Вт) ограждающей конструкции рассчитывается как

Rо = R1+ R2+R3, где:

R1=1/αвн, где αвн – коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м2 × °С), принимаемый по таблице 7 СНиП 23-02-2003;

R2 = 1/αвнеш, где αвнеш — коэффициент теплоотдачи наружной поверхности ограждающей конструкции для условий холодного периода, Вт/(м2 × °С), принимаемый по таблице 8 СП 23-101-2004;

R3 – общее термосопротивление, расчет которого описан в части 1 настоящей статьи.


При наличии в ограждающей конструкции прослойки, вентилируемой наружным воздухом, слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью, в этом расчете не учитываются. А на поверхности конструкции, обращенной в сторону вентилируемой воздухом снаружи прослойки, следует принимать коэффициент теплоотдачи αвнеш равным 10,8 Вт/(м2·°С).

Таблица 2. Нормируемые значения термосопротивления для стен по СНиП 23-02-2003.

Жилые здания для различных регионов РФ

Градусо-сутки отопительного периода, D, °С·сут

Нормируемые значения сопротивления теплопередаче , R, м2·°С/Вт, ограждающих конструкций для стен

Астраханская обл., Ставропольский край, Краснодарский край

2000

2,1

Белгородская обл., Волгоградская обл.

4000

2,8

Алтай, Красноярский край, Москва, Санкт Петербург, Владимирская обл.

6000

3,5

Магаданская обл.

8000

4,2

Чукотка, Камчатская обл.,

г. Воркута

10000

4,9

 

12000

5,6


Уточненные значения градусо-суток отопительного периода,  указаны в таблице 4.1 справочного пособия к СНиП 23-01-99* Москва, 2006.

Теплопроводность стен

Часть 4. Расчет минимально допустимой толщины стены на примере газобетона для Московской области.

Рассчитывая толщину стеновой конструкции, берем те же данные, что указаны в Части 1 настоящей статьи, но перестраиваем основную формулу: δ = λ·R, где δ – толщина стены, λ – теплопроводность материала, а R – норма теплосопротивления по СНиП.

Пример расчета минимальной толщины стены из газобетона с теплопроводностью 0,12 Вт/м°С в Московской области со средней температурой внутри дома в отопительный период +22°С.

  1. Берем нормируемое теплосопротивление для стен в Московском регионе для температуры +22°C: Rreq= 0,00035·5400 + 1,4 = 3,29 м2°C/Вт
  2. Коэффициент теплопроводности λ для газобетона марки D400 (габариты 625х400х250 мм) при влажности 5% = 0,147 Вт/м∙°С.
  3. Минимальная толщина стены из газобетонного камня D400: R·λ = 3,29·0,147 Вт/м∙°С=0,48 м.

Вывод: для Москвы и области для возведения стен с заданным параметром теплосопротивления нужен газобетонный блок с габаритом по ширине не менее 500 мм , либо блок с шириной 400 мм и последующим утеплением (минвата+оштукатуривание, например), для обеспечения характеристик и требований СНиП в части энергоэффективности стеновых конструкций.

Таблица 3. Минимальная толщина стен, возводимых из различных материалов, соответствующих нормам теплового сопротивления согласно СНиП.



Материал

Толщина стены, м

Тепло-

проводность,

 Вт/м∙°С

Прим.

Керамзитоблоки

0,46

0,14

Для строительства несущих стен используют марку не менее D400.

Шлакоблоки

0,95

0,3-0,5

 

Силикатный кирпич

1,25

0,38-0,87

 

Газосиликатные блоки d500

0,40

0,12-0,24

Использую марку от D400 и выше для домостроения

Пеноблок

0,20-0.40

0,06-0,12

строительство только каркасным способом

Ячеистый бетон

От 0,40

0,11-0,16

Теплопроводность ячеистого бетона прямо пропорциональна его плотности: чем «теплее» камень, тем он менее прочен.

Арболит

0,23

0,07 – 0,17

Минимальный размер стен для каркасных сооружений

Кирпич керамический полнотелый

1,97

0,6 – 0,7

 

Песко-бетонные блоки

4,97

1,51

При 2400 кг/м³ в условиях нормальной температуры и влажности воздуха.

Часть 5. Принцип определения значения сопротивления теплопередачи в многослойной стене.

Если вы планируете построить стену из нескольких видов материала (например, строительный камень+минеральный утеплитель+штукатурка), то R рассчитывается для каждого вида материала отдельно (по этой же формуле), а потом суммируется:

Rобщ= R1+ R2+…+ Rn+ Ra.l где:

R1-Rn — термосопротивления различных слоев

Ra.l – сопротивление замкнутой воздушной прослойки, если она присутствует в конструкции (табличные значения берутся в СП 23-101-2004, п. 9, табл. 7)

Пример расчета толщины минераловатного утеплителя для многослойной стены (шлакоблок — 400 мм, минеральная вата — ? мм, облицовочный кирпич — 120 мм) при значении сопротивления теплопередаче 3,4 м2*Град С/Вт (г. Оренбург).

R=Rшлакоблок+Rкирпич+Rвата=3,4


Rшлакоблок = δ/λ = 0,4/0,45 = 0,89 м2×°С/Вт

Rкирпич = δ/λ = 0,12/0,6 = 0,2 м2×°С/Вт

Rшлакоблок+Rкирпич=0,89+0,2 = 1,09 м2×°С/Вт (<3,4).

Rвата=R-(Rшлакоблок+Rкирпич) =3.4-1,09=2,31 м2×°С/Вт

δвата=Rвата·λ=2,31*0,045=0,1 м=100 мм (принимаем λ=0,045 Вт/(м×°С) – среднее значение теплопроводности для минеральной ваты различных видов).

Вывод: для соблюдения требований по сопротивлению теплопередачи можно использовать керамзитобетонные блоки в качестве основной конструкции с облицовкой ее керамическим кирпичом и прослойкой из минеральной ваты теплопроводностью не менее 0,45 и толщиной от 100 мм.

stroynedvizhka.ru

Теплопроводность стенРасчет теплопроводности для стен

При выполнении ремонта в доме у владельца возникают следующие вопросы: требуемая толщина стены, выбор теплоизоляционных материалов и способа утепления. При выборе материалов низкого качества в любое время года не будет поддерживаться нужная для комфортного проживания температура. Нужно рассчитать теплопроводность для стен. И сделать это прямо сейчас, если вы хотите жить в уютном доме.


Рассчитываем теплопроводность для стен

Перед хозяевами частной собственности предстает выбор: самостоятельно проводить вышеприведенные расчеты или довериться специалистам одной из фирм. В случае выбора в сторону проведения расчетов самими владельцами следует учитывать, что при их неправильных результатах предъявлять претензии будет некому.

Рассчитывать теплопроводность для стен можно при помощи онлайн программ, если нет желания самостоятельно находить требуемые показатели в таблицах. Не исключены в таких программах ошибки в целях получения выгоды интернет магазином. В настоящее время большинство теплоизоляционных материалов выпускаются с указанием коэффициента теплопроводности на упаковке. Зная данную величину, можно вычислить толщину теплоизоляции.

Зачем необходимо вычислять теплопроводность и устанавливать теплоизоляцию

При проведении расчетов и получении неправильных результатов возникнут следующие неблагоприятные факторы:

  • промерзание стен из-за уровня теплоизоляции ниже требуемого;
  • образование конденсата вследствие повышенной влажности;
  • получение некомфортной среды проживания;
  • возможен выход из строя бытовой техники;
  • порча стройматериалов

Теплопроводность стен

Определение толщины изоляции стен

Вначале следует определить величину теплового сопротивления, которая зависит от географического месторасположения дома. Тепловое сопротивление для каждого из слоев определяется отношением величины толщины слоя к коэффициенту теплопроводности, который выбирается из специальной таблицы относительно региона проживания. Для вычисления общего теплового сопротивления необходимо сложить все вычисленные тепловые сопротивления.

Преимущества расчета:

  • экономия бюджета, выделенного на ремонт;
  • экономия пространства за счет использования более эффективного вида утепления с
  • наименьшей толщиной;
  • уменьшение трудоемкости и времени выполнения работ;
  • предоставляется возможность самостоятельного выбора теплоизоляционного материала с учетом требуемых свойств без предоставления услуг продавца.

Для самостоятельных расчетов достаточно внимательно поработать с коэффициентами, которые будут указаны именно для требуемого района проживания. Если нет уверенности в правильности вычисленных величин, то при необходимости данные расчеты можно показать высококвалифицированному специалисту для их перепроверки. Такого рода консультация может стоить дешевле, чем поход в частную фирму с привлечением определенного количества работников, которые будут выполнять расчеты без участия заказчика, что приведет к удорожанию планируемого ремонта.

При выборе теплоизоляционных материалов для стен следует обращать внимание на наличие следующих полезных свойств:

  • тепловая устойчивость;
  • соответствие нормам пожаробезопасности;
  • водоустойчивость;
  • защита от влаги;
  • звуковая и тепловая изоляции

Материал с учетом перечисленных показателей будет стоить дороже, но в качестве дополнения будет получено еще одно, как минимум, полезное свойство, позволяющее назвать покупку более удачной в соотношении цены и качества.

delaydachu.ru

Теплопотери сквозь конструкционные материалы

Теплопроводность является одним из способов потерь тепла жилыми помещениями. Эта характеристика выражается количеством тепла, способным проникнуть сквозь единицу площади материала (1 м2) за секунду при стандартной толщине слоя (1 м). Физики объясняют выравнивание температур различных тел, объектов путем теплопроводности природным стремлением к термодинамическому равновесию всех материальных веществ.

Таким образом, каждый индивидуальный застройщик, отапливая помещение в зимний период, получает потери тепловой энергии, уходящей из жилища сквозь наружные стены, полы, окна, кровлю. Чтобы сократить расход энергоносителя для обогрева помещений, сохранив внутри них комфортный для эксплуатации микроклимат, необходимо рассчитать толщину всех ограждающих конструкций на этапе проектирования. Это позволит сократить бюджет строительства.

Таблица теплопроводности строительных материалов позволяет использовать точные коэффициенты для стеновых конструкционных материалов. Нормативы СНиП регламентируют сопротивление фасадов коттеджа передаче тепла холодному воздуху улицы в пределах 3,2 единиц. Перемножив эти значения, можно получить необходимую толщину стены, чтобы определиться с количеством материала.

Например, при выборе ячеистого бетона с коэффициентом 0,12 единиц достаточно кладки в один блок длиной 0,4 м. используя более дешевые блоки из этого же материала с коэффициентом 0,16 единиц, потребуется сделать стену толще – 0,52 м. Коэффициент теплопроводности сосны, ели составляет 0,18 единиц. Поэтому, для соблюдения условия сопротивления теплопередаче 3,2, потребуется 57 см брус, которого не существует в природе. При выборе кирпичной кладки с коэффициентом 0,81 единица толщина наружных стен грозит увеличением до 2,6 м, железобетонных конструкций – до 6,5 м.

На практике стены изготавливают многослойными, закладывая внутрь слой утеплителя или обшивая теплоизолятором наружную поверхность. У этих материалов коэффициент теплопроводности гораздо ниже, что позволяет уменьшить толщину многократно. Конструкционный материал обеспечивает прочность здания, теплоизолятор снижает теплопотери до приемлемого уровня. Современные облицовочные материалы, используемые на фасадах, внутренних стенах, так же обладают сопротивлением теплопотерям. Поэтому, в расчетах учитываются все слои будущих стен.

Вышеуказанные расчеты будут неточными если не учесть наличие в каждой стене коттеджа светопрозрачных конструкций. Таблица теплопроводности строительных материалов в нормативах СНиП обеспечивает легкий доступ к коэффициентам теплопроводности данных материалов.

Пример расчета толщины стены по теплопроводности

При выборе типового или индивидуального проекта застройщик получает комплект документации, необходимый для возведения стен. Силовые конструкции в обязательном порядке просчитаны на прочность с учетом ветровых, снеговых, эксплуатационных, конструкционных нагрузок. Толщина стен учитывает характеристики материала каждого слоя, поэтому, теплопотери гарантированно будут ниже допустимых норм СНиП. В этом случае заказчик может предъявить претензии организации, занимавшейся проектированием, при отсутствии необходимого эффекта в процессе эксплуатации жилища.

Однако, при строительстве дачи, садового домика многие владельцы предпочитают экономить на приобретении проектной документации. В этом случае расчеты толщины стен можно произвести самостоятельно. Специалисты не рекомендуют пользоваться сервисами на сайтах компаний, реализующих конструкционные материалы, утеплители. Многие из них завышают в калькуляторах значения коэффициентов теплопроводности стандартных материалов для представления собственной продукции в выгодном свете. Подобнее ошибки в расчетах чреваты для застройщика снижением комфортности внутренних помещений в холодный период.

Самостоятельный расчет не представляет сложностей, используется ограниченное количество формул, нормативных значений:

  • теплосопротивление стены – 3,5 либо больше этого числа (согласно СНиП), является суммой теплосопротивлений всех слоев, из которых состоит несущая стена
  • коэффициент теплопроводности строительных материалов – каждый производитель конструкционного материала, светопрозрачных конструкций, утеплителя указывает его в обязательном порядке, однако, лучше дополнительно свериться с таблицей в нормативах СНиП
  • теплосопротивление отдельного слоя стены – вычисляется путем умножения толщины слоя (м) на коэффициент теплопроводности материала

Например, чтобы привести толщину кирпичной стены в соответствие с нормативным теплосопротивлением, потребуется умножить коэффициент для этого материала, взятый из таблицы на нормативное теплосопротивление:

0,76 х 3,5 = 2,66 м

Подобная крепость излишне затратна для любого застройщика, поэтому, следует снизить толщину кладки до приемлемых 38 см, добавив утеплитель:

  • облицовка в полкирпича 12,5 см
  • внутренняя стена в кирпич 25 см

Теплосопротивление кирпичной кладки в этом случае составит 0,38/0,76 = 0,5 единиц. Вычитая из нормативного параметра полученный результат, получаем необходимое теплосопротивление слоя утеплителя:

3,5 – 0,5 = 3 единицы

При выборе базальтовой ваты с коэффициентом 0,039 единиц, получаем слой толщиной:

3 х 0,039 = 11,7 см

Отдав предпочтение экструдированному пенополистиролу с коэффициентом 0,037 единиц, снижаем слой утеплителя до:

3 х 0,037 = 11,1 см

На практике, можно выбрать 12 см для гарантированного запаса либо обойтись 10 см, учитывая наружные, внутренние облицовки стен, так же обладающие теплосопротивлением. Необходимый запас можно добрать без использования конструкционных материалов либо утеплителей, изменив конструкцию кладки. Замкнутые пространства воздушных прослоек внутри некоторых типов облегченных кладок так же обладают теплосопротивлением.

Их теплопроводность можно узнать из нижеприведенной таблицы, находящейся в СНиП.

Например, 10 см прослойка замкнутого контура обеспечивает теплоспопротивление 0,18 либо 0,15 единиц при отрицательных, положительных температурах, соответственно. Сантиметровый воздушный зазор добавляет несущей стене 0,15 или 0,13 единиц теплосопротивления (зимой, летом, соответственно).

koffkindom.ru

Для чего нужен расчет

Теплопроводность данного элемента здания – свойство строения проводить тепло через единицу своей площади при разности температур внутри и снаружи помещения в 1 град. С.

теплотехнический расчет

Выполняемый упомянутым выше сервисом теплотехнический расчет ограждающих конструкций необходим для следующих целей:

  • для выбора отопительного оборудования и типа системы, позволяющей не только компенсировать теплопотери, но и создать комфортную температуру внутри жилых помещений;
  • для определения необходимости дополнительного утепления здания;
  • при проектировании и строительстве нового здания для выбора стенового материала, обеспечивающего наименьшие теплопотери в определенных климатических условиях;
  • для создания внутри помещения комфортной температуры не только в отопительный период, но и летом в жаркую погоду.

теплотехнический расчет ограждающих конструкций

От чего зависит теплопроводность

Теплопередача зависит от таких факторов, как:

  • Материал, из которого возведено строение, – различные материалы отличаются по способности проводить тепло. Так, бетон, различные виды кирпича способствуют большой потере тепла. Оцилинрованное бревно, брус, пено- и газоблоки, наоборот, при меньшей толщине имеют меньшую теплопроводность, что обеспечивает сохранение тепла внутри помещения и намного меньшие затраты на утепление и отопление здания.
  • Толщина стены – чем данное значение больше, тем меньше теплоотдача происходит через ее толщу.
  • Влажность материала – чем больше влажность сырья, из которого возведена конструкция, тем больше он проводит тепла и тем быстрее она разрушается.
  • Наличие воздушных пор в материале – заполненные воздухом поры препятствуют ускоренным теплопотерям. Если эти поры заполняются влагой, теплопотри увеличиваются.
  • Наличие дополнительного утепления – облицованная слоем утеплителя снаружи или внутри стены по потерям тепла имеют значения в разы меньше чем неутепленные.

теплорасчет

В строительстве наряду с теплопроводностью стен большое распространение приобрел такая характеристика, как термическое сопротивление (R). Рассчитывается она с учетом следующих показателей:

  • коэффициента теплопроводности стенового материала (λ) (Вт/м×0С);
  • толщины конструкции (h), (м);
  • наличия утеплителя;
  • влажности материала (%).

Чем ниже величина термического сопротивления, тем в большей мере стена подвержена теплопотерям.

расчет толщины утеплителя для стен калькулятор

Теплотехнический расчет ограждающих конструкций по данной характеристике выполняется по следующей формуле:

R= h/ λ; (м2×0С/Вт)

Пример расчета термического сопротивления:

Исходные данные:

  • несущая стена выполнена из сухого соснового бруса толщиной 30 см (0,3 м);
  • коэффициент теплопроводности составляет 0,09 Вт/м×0С;
  • расчёт результата.

Таким образом, термическое сопротивление такой стены будет составлять:

R=0,3/0,09=3,3 м2×0С/Вт

теремок теплотехнический расчетПолученные в результате вычисления значения сравнивают с нормативными согласно СНиП ІІ 03 79. При этом учитывают такой показатель, как градусо-сутки периода, в течение которого продолжается отопительный сезон.

Если полученное значение равно или больше нормативного, то материал и толщина стеновых конструкций выбраны правильно. В противном случае следует произвести утепление здания для достижения нормативного значения.

При наличии утеплителя его термическое сопротивление рассчитывают отдельно и суммируют с аналогичным значением основного стенового материала. Также если материал стеновой конструкции имеет повышенную влажность, применяют соответствующий коэффициент теплопроводности.

Для более точного расчета термического сопротивления данной конструкции к полученному результату добавляют аналогичные значения окон и выходящих на улицу дверей.

Допустимые значения

Выполняя теплотехнический расчет наружной стены, учитывают также и регион, в котором будет располагаться дом:

  • Для южных регионов с теплыми зимами и небольшими перепадами температур можно возводить стены небольшой толщины из материалов со средней степенью теплопроводности – керамический и глиняный обожженный одинарный и двойной, кирпич, пено- и газобетон большой плотности. Толщина стен для таких регионов может быть не более 20 см.
  • В то же самое время для северных регионов целесообразнее и экономически выгоднее строить ограждающие стеновые конструкции средней и большой толщины из материалов с большим термическим сопротивлением – оцилиндрованное бревно, газо- и пенобетон средней плотности. Для таких условий возводят стеновые конструкции толщиной до 50–60 см.
  • Для регионов с умеренным климатом и чередующимися по температурному режиму зимами подходят стены из материалов с высоким и средним значением термического сопротивления – газо- и пенобетон, брус, оцилиндрованное бревно среднего диаметра. В таких условиях толщина стеновых ограждающих конструкций с учетом утеплителей составляет не более 40–45 см.

теплотехнический расчет наружной стены

Теплопередача различных материалов

Одним из основных факторов, влияющих на теплопроводность стены, является стройматериал, из которого она возведена. Такая зависимость объясняется его строением. Так, наименьшей теплопроводностью обладают материалы с небольшой плотностью, у которых частицы располагаются достаточно рыхло и имеется большое количество пор и пустот, заполненных воздухом. К ним относятся различные виды древесины, легких пористых бетонов – пено-, газо-, шлакобетоны, а также пустотные силикатные кирпичи.

К материалам с высокой теплопроводностью и низким термическим сопротивлениям относятся различные виды тяжелых бетонов, монолитный силикатный кирпич. Такая особенность объясняется тем, что частицы в них располагаются очень близко друг к другу, без пустот и пор. Это способствует более быстрой передаче тепла в толще стены и большой теплопотере.

Таблица. Коэффициенты теплопроводности строительных материалов (СНиП ІІ 03 79)

Расчет многослойной конструкции

Теплотехнический расчет наружной стены, состоящей из нескольких слоев, производится следующим образом:

  • по формуле, описанной выше, высчитывается значение термического сопротивления каждого из слоев «стенового пирога»;
  • значения данной характеристики всех слоев складывают вместе, получая суммарное термическое сопротивление стеновой многослойной конструкции.

Исходя из данной методики, можно производить и расчет толщины утеплителя для стен. Для этого необходимо недостающее до нормы термическое сопротивление умножить на коэффициент теплопроводности утеплителя – в итоге получится толщина слоя утеплителя.

теплотехнический расчет ограждающих конструкций пример расчета

С помощью программы ТеРеМОК теплотехнический подсчет выполняется автоматически. Для того чтобы калькулятор теплопроводности стены выполнил расчеты, в него необходимо внести следующие исходные данные:

  • тип здания – жилое, производственное;
  • материал стены;
  • толщина конструкции;
  • регион;
  • требуемая температура и влажность внутри здания;
  • наличие, тип и толщина утеплителя.

Полезное видео: как самостоятельно подсчитать теплопотери в доме

 

Таким образом, теплотехнический расчет ограждающих конструкций является очень важным как для строящегося дома, так и для уже давно построенного здания. В первом случае правильный теплорасчет позволит сэкономить на отоплении, во втором – подобрать оптимальный по толщине и составу утеплитель.

stroim.guru

Теплопроводность стен

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.