Подбирая подходящий материал для проведения того или иного вида строительных работ, особое внимание следует обращать на его технические характеристики. Это касается и удельной теплоемкости кирпича, от которой во многом зависит потребность дома в последующей термоизоляции и дополнительной отделке стен.

Характеристики кирпича, которые влияют на его применение:

  • Удельная теплоемкость. Величина, определяющая количество тепловой энергии, необходимой для нагревания 1 кг на 1 градус.
  • Теплопроводность. Очень важная характеристика для кирпичных изделий, позволяющая определить количество передаваемого тепла со стороны комнаты на улицу.
  • На уровень теплопередачи кирпичной стены прямым образом влияют характеристики использованного для ее возведения материала. В тех случаях, когда речь идет о многослойной кладке, потребуется учитывать коэффициент теплопроводности каждого слоя в отдельности.

Керамический

Керамический кирпич


Исходя из технологии производства, кирпич классифицируется на керамическую и силикатную группы. При этом оба вида имеют значительные отличия по плотности материала, удельной теплоемкости и коэффициенту теплопроводности. Сырьем для изготовления керамического кирпича, еще его называют красным, выступает глина, в которую добавляют ряд компонентов. Сформированные сырые заготовки подвергаются обжигу в специальных печах. Показатель удельной теплоемкости может колебаться в пределах 0,7-0,9 кДж/(кг·K). Что касается средней плотности, то она обычно находится на уровне 1400 кг/м3.

Среди сильных сторон керамического кирпича можно выделить:

1. Гладкость поверхность. Это повышает его внешнюю эстетичность и удобство укладки.
2. Стойкость к морозу и влаге. В обычных условиях стены не нуждаются в дополнительной влаго- и термоизоляции.
3. Способность переносить высокие температуры. Это позволяет использовать керамический кирпич для возведения печей, мангалов, жаропрочных перегородок.
4. Плотность 700-2100 кг/м3. На эту характеристику непосредственно влияет наличие внутренних пор. По мере увеличения пористости материала уменьшается его плотность, и возрастают теплоизоляционные характеристики.

Силикатный

Силикатный кирпич


Что касается силикатного кирпича, то он бывает полнотелым, пустотелым и поризованным. Исходя из размеров, различают одинарные, полуторные и двойные кирпичи. В среднем силикатный кирпич обладает плотностью 1600 кг/м3. Особенно ценятся шумопоглощающие характеристики силикатной кладки: даже если речь идет о стене небольшой толщины, уровень ее звукоизоляции будет на порядок выше, чем в случае применения других типов кладочного материала.

Облицовочный

Облицовочный кирпич

Отдельно стоит сказать об облицовочном кирпиче, который с одинаковым успехом противостоит и воде, и повышению температуры. Показатель удельной теплоемкости этого материала находится на уровне 0,88 кДж/(кг·K), при плотности до 2700 кг/м3. В продаже облицовочные кирпичи представлены в большом многообразии оттенков. Они подходят как для облицовки, так и для укладки.

Огнеупорный

Огнеупорный кирпич

Представлен динасовыми, карборундовыми, магнезитовыми и шамотными кирпичами. Масса одного кирпича довольно большая, по причине значительной плотности (2700 кг/м3). Самый низкий показатель теплоемкости при нагревании у карборундового кирпича 0,779 кДж/(кг·K) для температуры +1000 градусов. Скорость нагревания печи, уложенной из этого кирпича, значительно превышает нагрев шамотной кладки, однако охлаждение наступает быстрее.


Из огнеупорного кирпича обустраиваются печи, предусматривающие нагревание до +1500 градусов. На удельную теплоемкость данного материала большое влияние оказывает температура нагрева. К примеру, тот же шамотный кирпич при +100 градусах обладает теплоемкостью 0,83 кДж/(кг·K). Однако, если его нагреть до +1500 градусов, это спровоцирует рост теплоемкости до 1,25 кДж/(кг·K).

Зависимость от температуры использования

На технические показатели кирпича большое влияние оказывает температурный режим:

  • Трепельный. При температуре от -20 до + 20 плотность меняется в пределах 700-1300 кг/м3. Показатель теплоемкости при этом находится на стабильном уровне 0,712 кДж/(кг·K).
  • Силикатный. Аналогичный температурный режим -20 — +20 градусов и плотность от 1000 до 2200 кг/м3 предусматривает возможность разной удельной теплоемкости 0,754-0,837 кДж/(кг·K).
  • Саманный. При идентичности температуры с предыдущим типом, демонстрирует стабильную теплоемкость 0,753 кДж/(кг·K).
  • Красный. Может применятся при температуре 0-100 градусов. Его плотность может колебаться от 1600-2070 кг/м3, а теплоемкость – от 0,849 до 0,872 кДж/(кг·K).

  • Желтый. Температурные колебания от -20 до +20 градусов и стабильная плотность 1817 кг/м3 дает такую же стабильную теплоемкость 0,728 кДж/(кг·K).
  • Строительный. При температуре +20 градусов и плотности 800-1500 кг/м3 теплоемкость находится на уровне 0,8 кДж/(кг·K).
  • Облицовочный. Тот же температурный режим +20, при плотности материла в 1800 кг/м3 определяет теплоемкость 0,88 кДж/(кг·K).
  • Динасовый. Эксплуатация в режиме повышенной температуры от +20 до +1500 и плотности 1500-1900 кг/м3 подразумевает последовательное возрастание теплоемкости от 0,842 до 1,243 кДж/(кг·K).
  • Карборундовый. По мере нагревания от +20 до +100 градусов материал плотностью 1000-1300 кг/м3 постепенно увеличивает свою теплоемкость от 0,7 до 0,841 кДж/(кг·K). Однако, если нагревание карборундового кирпича продолжить далее, то его теплоемкость начинает уменьшаться. При температуре +1000 градусов она будет равняться 0,779 кДж/(кг·K).
  • Магнезитовый. Материал плотностью 2700 кг/м3 при повышении температуры от +100 до +1500 градусов постепенно увеличивает свою теплоемкость 0,93-1,239 кДж/(кг·K).
  • Хромитовый. Нагревание изделия плотностью 3050 кг/м3 от +100 до +1000 градусов провоцирует постепенное возрастание его теплоемкости от 0,712 до 0,912 кДж/(кг·K).
  • Шамотный. Обладает плотностью 1850 кг/м3. При нагревании от +100 до +1500 градусов происходит увеличение теплоемкости материала с 0,833 до 1,251 кДж/(кг·K).

Подбирайте кирпичи правильно, в зависимости от поставленных задач на стройке.

kvartirnyj-remont.com

Виды кирпича

Для того чтобы ответить на вопрос: «как построить теплый дом из кирпича?», нужно выяснить какой лучше всего использовать его вид. Так как современный рынок предлагает огромный выбор данного строительного материала. Рассмотрим наиболее распространенные виды.

Силикатный

Наиболее высокую популярность и широкое распространение в строительстве на территории России имеют силикатные кирпичи. Данный вид изготавливается путем смешения извести и песка. Высокую распространённость этот материал получил благодаря широкой области применения в быту, а также из-за того, что цена на него довольно не высока.

Однако если обратиться к физическим величинам этого изделия, то тут не все так гладко.

Рассмотрим двойной силикатный кирпич М 150. Марка М 150 говорит о высокой прочности, так что он даже приближается к природному камню. Размеры составляют 250х120х138 мм.

Теплопроводность данного типа в среднем составляет 0,7 Вт/(м оС). Это достаточно низкий показатель, по сравнению с другими материалами. Поэтому теплые стены из кирпича такого типа скорей всего не получатся.

Немаловажным достоинством такого кирпича по сравнению с керамическим, являются звукоизоляционные свойства, которые очень благоприятно сказываются на строительстве стен ограждающих квартиры или разделяющих комнаты.

Керамический

Второе место по популярности строительных кирпичей обоснованно отдано керамическим. Для их производства различные смеси глин подвергают обжигу.

Данный вид делится на два типа:


  1. Строительный,
  2. Облицовочный.

Строительный кирпич используется для возведения фундаментов, стен домов, печей и т.д., а облицовочный для отделки зданий и помещений. Такой материал больше подходит для строительства своими руками, так как он значительно легче силикатного.

Теплопроводность керамического блока определяется коэффициентом теплопроводности и численно равна:

  • Полнотелый – 0,6 Вт/м* оС;
  • Пустотелый кирпич — 0,5 Вт/м* оС;
  • Щелевой – 0,38 Вт/м* оС.

Средняя теплоемкость кирпича составляет около 0,92 кДж.

Теплая керамика

Теплый кирпич — относительно новый строительный материал. В принципе, он является усовершенствованием обычного керамического блока.

Данный вид изделия значительно больше обычного, его размеры могут быть в 14 раз больше стандартных. Но это не очень сильно сказывается на общей массе конструкции.

Теплоизоляционные свойства практически в 2 раза лучше, по сравнению с керамическим кирпичом. Коэффициент теплопроводности приблизительно равен 0,15 Вт/м* оС.


Блок теплой керамики имеет много мелких пустот в виде вертикальных каналов. А как говорилось выше, чем больше воздуха в материале, тем выше теплоизоляционные свойства данного строй-материала. Теплопотери могут возникать в основном на внутренних перегородках или же в швах кладки.

Резюме

Надеемся, наша статья поможет вам разобраться в большом количестве физических параметров кирпича и выбрать для себя наиболее подходящий вариант по всем показателям! А видео в этой статье предоставит дополнительную информацию по этой теме, смотрите.

klademkirpich.ru

Определение и формула теплоемкости

Каждое вещество в той или иной степени способно поглощать, запасать и удерживать тепловую энергию. Для описания этого процесса введено понятие теплоемкости, которая является свойством материала поглощать тепловую энергию при нагревании окружающего воздуха.

Чтобы нагреть какой-либо материал массой m от температуры tнач до температуры tкон, нужно будет потратить определенное количество тепловой энергии Q, которое будет пропорциональным массе и разнице температур ΔТ (tкон-tнач). Поэтому формула теплоемкости будет выглядеть следующим образом: Q = c*m*ΔТ, где с – коэффициент теплоемкости (удельное значение). Его можно рассчитать по формуле: с = Q/(m* ΔТ) (ккал/(кг* °C)).


Условно приняв, что масса вещества равна 1 кг, а ΔТ = 1°C, можно получить, что с = Q (ккал). Это означает, что удельная теплоемкость равна количеству тепловой энергии, которая расходуется на нагревание материала массой 1 кг на 1°C.

Использование теплоемкости на практике

Таблица теплоемкости строительных материалов

Таблица теплоемкости строительных материалов.

Строительные материалы с высокой теплоемкостью используют для возведения теплоустойчивых конструкций. Это очень важно для частных домов, в которых люди проживают постоянно. Дело в том, что такие конструкции позволяют запасать (аккумулировать) тепло, благодаря чему в доме поддерживается комфортная температура достаточно долгое время. Сначала отопительный прибор нагревает воздух и стены, после чего уже сами стены прогревают воздух. Это позволяет сэкономить денежные средства на отоплении и сделать проживание более уютным. Для дома, в котором люди проживают периодически (например, по выходным), большая теплоемкость стройматериала будет иметь обратный эффект: такое здание будет достаточно сложно быстро натопить.

Значения теплоемкости строительных материалов приведены в СНиП II-3-79. Ниже приведена таблица основных строительных материалов и значения их удельной теплоемкости.

Таблица 1


Материал Плотность, кг/м3 Удельная теплоемкость, кДж/(кг*°C)
Пенополистирол 40 1,34
Минвата 125 0,84
Газо- и пенобетон 650 0,84
Гипсовые листы 800 0,84
Дерево 500 2,3
Клееная фанера 600 2,3
Керамический кирпич 1600 0,88
Бетон 2300 0,84
Железобетон 2500 0,84
Кирпичная кладка 1800 0,88

Строительный кирпич

Кирпич обладает высокой теплоемкостью, поэтому идеально подходит для строительства домов и возведенияия печей.

Говоря о теплоемкости, следует отметить, что отопительные печи рекомендуется строить из кирпича, так как значение его теплоемкости достаточно высоко. Это позволяет использовать печь как своеобразный аккумулятор тепла. Теплоаккумуляторы в отопительных системах (особенно в системах водяного отопления) с каждым годом применяются все чаще. Такие устройства удобны тем, что их достаточно 1 раз хорошо нагреть интенсивной топкой твердотопливного котла, после чего они будут обогревать ваш дом на протяжении целого дня и даже больше. Это позволит существенно сэкономить ваш бюджет.

Теплоемкость строительных материалов


Какими же должны быть стены частного дома, чтобы соответствовать строительным нормам? Ответ на этот вопрос имеет несколько нюансов. Чтобы с ними разобраться, будет приведен пример теплоемкости 2-х наиболее популярных строительных материалов: бетона и дерева. Теплоемкость бетона имеет значение 0,84 кДж/(кг*°C), а дерева – 2,3 кДж/(кг*°C).

На первый взгляд можно решить, что дерево – более теплоемкий материал, нежели бетон. Это действительно так, ведь древесина содержит практически в 3 раза больше тепловой энергии, нежели бетон. Для нагрева 1 кг дерева нужно потратить 2,3 кДж тепловой энергии, но при остывании оно также отдаст в пространство 2,3 кДж. При этом 1 кг бетонной конструкции способен аккумулировать и, соответственно, отдать только 0,84 кДж.

Но не стоит спешить с выводами. Например, нужно узнать, какую теплоемкость будет иметь 1 м2 бетонной и деревянной стены толщиной 30 см. Для этого сначала нужно посчитать вес таких конструкций. 1 м2 данной бетонной стены будет весить: 2300 кг/м3*0,3 м3 = 690 кг. 1 м2 деревянной стены будет весить: 500 кг/м3*0,3 м3 = 150 кг.

Таблица сравнения теплопроводности бревна с кирпичной кладкой

Таблица сравнения теплопроводности бревна с кирпичной кладкой.

Далее нужно посчитать, какое количество тепловой энергии будет содержаться в этих стенах при температуре 22°C. Для этого нужно теплоемкость умножить на температуру и вес материала:

  • для бетонной стены: 0,84*690*22 = 12751 кДж;
  • для деревянной конструкции: 2,3*150*22 = 7590 кДж.

Из полученного результата можно сделать вывод, что 1 м3 древесины будет практически в 2 раза меньше аккумулировать тепло, чем бетон. Промежуточным материалом по теплоемкости между бетоном и деревом является кирпичная кладка, в единице объема которой при тех же условиях будет содержаться 9199 кДж тепловой энергии. При этом газобетон, как строительный материал, будет содержать только 3326 кДж, что будет значительно меньше дерева. Однако на практике толщина деревянной конструкции может быть 15-20 см, когда газобетон можно уложить в несколько рядов, значительно увеличивая удельную теплоемкость стены.

Использование различных материалов в строительстве

Дерево

Для комфортного проживания в доме очень важно, чтобы материал обладал высокой теплоемкостью и низкой теплопроводностью.

В этом отношении древесина является оптимальным вариантом для домов не только постоянного, но и временного проживания. Деревянное здание, не отапливаемое длительное время, будет хорошо воспринимать изменение температуры воздуха. Поэтому обогрев такого здания будет происходить быстро и качественно.

В основном в строительстве используют хвойные породы: сосну, ель, кедр, пихту. По соотношению цены и качества наилучшим вариантом является сосна. Что бы вы ни выбрали для конструирования деревянного дома, нужно учитывать следующее правило: чем толще будут стены, тем лучше. Однако здесь также нужно учитывать ваши финансовые возможности, так как с увеличением толщины бруса значительно возрастет его стоимость.

Кирпич

Данный стройматериал всегда был символом стабильности и прочности. Кирпич имеет хорошую прочность и сопротивляемость негативным воздействиям внешней среды. Однако если принимать в расчет тот факт, что кирпичные стены в основном конструируются толщиной 51 и 64 см, то для создания хорошей теплоизоляции их дополнительно нужно покрывать слоем теплоизоляционного материала. Кирпичные дома отлично подходят для постоянного проживания. Нагревшись, такие конструкции способны долгое время отдавать в пространство накопившееся в них тепло.

Выбирая материал для строительства дома, следует учитывать не только его теплопроводность и теплоемкость, но и то, как часто в таком доме будут проживать люди. Правильный выбор позволит поддерживать уют и комфорт в вашем доме на протяжении всего года.

Возможно вас заинтересует: в калуге бурение скважины на воду: стоимость приемлемая

opt-stroy.net

Определение и формула теплоемкости

Каждое вещество в той или иной степени способно поглощать, запасать и удерживать тепловую энергию. Для описания этого процесса введено понятие теплоемкости, которая является свойством материала поглощать тепловую энергию при нагревании окружающего воздуха.

Чтобы нагреть какой-либо материал массой m от температуры tнач до температуры tкон, нужно будет потратить определенное количество тепловой энергии Q, которое будет пропорциональным массе и разнице температур ΔТ (tкон-tнач). Поэтому формула теплоемкости будет выглядеть следующим образом: Q = c*m*ΔТ, где с — коэффициент теплоемкости (удельное значение). Его можно рассчитать по формуле: с = Q/(m* ΔТ) (ккал/(кг* °C)).

Условно приняв, что масса вещества равна 1 кг, а ΔТ = 1°C, можно получить, что с = Q (ккал). Это означает, что удельная теплоемкость равна количеству тепловой энергии, которая расходуется на нагревание материала массой 1 кг на 1°C.

Использование теплоемкости на практике

Строительные материалы с высокой теплоемкостью используют для возведения теплоустойчивых конструкций. Это очень важно для частных домов, в которых люди проживают постоянно. Дело в том, что такие конструкции позволяют запасать (аккумулировать) тепло, благодаря чему в доме поддерживается комфортная температура достаточно долгое время. Сначала отопительный прибор нагревает воздух и стены, после чего уже сами стены прогревают воздух. Это позволяет сэкономить денежные средства на отоплении и сделать проживание более уютным. Для дома, в котором люди проживают периодически (например, по выходным), большая теплоемкость стройматериала будет иметь обратный эффект: такое здание будет достаточно сложно быстро натопить.

Значения теплоемкости строительных материалов приведены в СНиП II-3-79. Ниже приведена таблица основных строительных материалов и значения их удельной теплоемкости.

Таблица 1

Материал Плотность, кг/м3 Удельная теплоемкость, кДж/(кг*°C)
Пенополистирол 40 1,34
Минвата 125 0,84
Газо- и пенобетон 650 0,84
Гипсовые листы 800 0,84
Дерево 500 2,3
Клееная фанера 600 2,3
Керамический кирпич 1600 0,88
Бетон 2300 0,84
Железобетон 2500 0,84
Кирпичная кладка 1800 0,88

Говоря о теплоемкости, следует отметить, что отопительные печи рекомендуется строить из кирпича, так как значение его теплоемкости достаточно высоко. Это позволяет использовать печь как своеобразный аккумулятор тепла. Теплоаккумуляторы в отопительных системах (особенно в системах водяного отопления) с каждым годом применяются все чаще. Такие устройства удобны тем, что их достаточно 1 раз хорошо нагреть интенсивной топкой твердотопливного котла, после чего они будут обогревать ваш дом на протяжении целого дня и даже больше. Это позволит существенно сэкономить ваш бюджет.

Теплоемкость строительных материалов

Какими же должны быть стены частного дома, чтобы соответствовать строительным нормам? Ответ на этот вопрос имеет несколько нюансов. Чтобы с ними разобраться, будет приведен пример теплоемкости 2-х наиболее популярных строительных материалов: бетона и дерева. Теплоемкость бетона имеет значение 0,84 кДж/(кг*°C), а дерева — 2,3 кДж/(кг*°C).

На первый взгляд можно решить, что дерево — более теплоемкий материал, нежели бетон. Это действительно так, ведь древесина содержит практически в 3 раза больше тепловой энергии, нежели бетон. Для нагрева 1 кг дерева нужно потратить 2,3 кДж тепловой энергии, но при остывании оно также отдаст в пространство 2,3 кДж. При этом 1 кг бетонной конструкции способен аккумулировать и, соответственно, отдать только 0,84 кДж.

Но не стоит спешить с выводами. Например, нужно узнать, какую теплоемкость будет иметь 1 м2 бетонной и деревянной стены толщиной 30 см. Для этого сначала нужно посчитать вес таких конструкций. 1 м2 данной бетонной стены будет весить: 2300 кг/м3*0,3 м3 = 690 кг. 1 м2 деревянной стены будет весить: 500 кг/м3*0,3 м3 = 150 кг.

Далее нужно посчитать, какое количество тепловой энергии будет содержаться в этих стенах при температуре 22°C. Для этого нужно теплоемкость умножить на температуру и вес материала:

  • для бетонной стены: 0,84*690*22 = 12751 кДж;
  • для деревянной конструкции: 2,3*150*22 = 7590 кДж.

Из полученного результата можно сделать вывод, что 1 м3 древесины будет практически в 2 раза меньше аккумулировать тепло, чем бетон. Промежуточным материалом по теплоемкости между бетоном и деревом является кирпичная кладка, в единице объема которой при тех же условиях будет содержаться 9199 кДж тепловой энергии. При этом газобетон, как строительный материал, будет содержать только 3326 кДж, что будет значительно меньше дерева. Однако на практике толщина деревянной конструкции может быть 15-20 см, когда газобетон можно уложить в несколько рядов, значительно увеличивая удельную теплоемкость стены.

Использование различных материалов в строительстве

Дерево

Для комфортного проживания в доме очень важно, чтобы материал обладал высокой теплоемкостью и низкой теплопроводностью.

В этом отношении древесина является оптимальным вариантом для домов не только постоянного, но и временного проживания. Деревянное здание, не отапливаемое длительное время, будет хорошо воспринимать изменение температуры воздуха. Поэтому обогрев такого здания будет происходить быстро и качественно.

В основном в строительстве используют хвойные породы: сосну, ель, кедр, пихту. По соотношению цены и качества наилучшим вариантом является сосна. Что бы вы ни выбрали для конструирования деревянного дома, нужно учитывать следующее правило: чем толще будут стены, тем лучше. Однако здесь также нужно учитывать ваши финансовые возможности, так как с увеличением толщины бруса значительно возрастет его стоимость.

Кирпич

Данный стройматериал всегда был символом стабильности и прочности. Кирпич имеет хорошую прочность и сопротивляемость негативным воздействиям внешней среды. Однако если принимать в расчет тот факт, что кирпичные стены в основном конструируются толщиной 51 и 64 см, то для создания хорошей теплоизоляции их дополнительно нужно покрывать слоем теплоизоляционного материала. Кирпичные дома отлично подходят для постоянного проживания. Нагревшись, такие конструкции способны долгое время отдавать в пространство накопившееся в них тепло.

Выбирая материал для строительства дома, следует учитывать не только его теплопроводность и теплоемкость, но и то, как часто в таком доме будут проживать люди. Правильный выбор позволит поддерживать уют и комфорт в вашем доме на протяжении всего года.


ostroymaterialah.ru

Теплоемкость кирпича

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector